Space-time Surveillance for the Detection of Emerging Clusters

نویسندگان

  • Renato Assunção
  • Thaís Correa
چکیده

Space-time events with coordinates (xi, yi, ti) are monitored continually. The events' density varies largely in both, space and time. At a certain unknown instant τ , a relatively small cluster of increased intensity starts to emerge. Its location is also unknown. The aim is to let make an alarm go off as soon as possible after τ but avoiding it to go off unnecessarily. In this paper we propose an alarm system that does not require the speci cation of the spatial pattern or the temporal pattern. It is based on a martingale approach. We detail its theoretical foundation and the corresponding algorithm. We provide an illustration of its use in practice. Resumo. Eventos espaço-temporais com coordenadas (xi, yi, ti) s˜ ao monitorados continuamente. A densidade dos eventos é bastante variável, tanto no espaço quanto no tempo. Em certo momento desconhecido τ , um cluster relativamente pequeno começa a emergir. Sua localizaç˜ ao é desconhecida. O objetivo é fazer um alarme soar logo após τ mas evitando que ele soe desnecessariamente. Neste artigo, nós propomos um sistema alarme que n˜ ao requer a especi caç˜ ao do padr˜ ao espacial ou temporal. Ele é baseado num método de martingalas. Nós damos os detalhes teóricos e o algoritmo correspondente. Nós também fornecemos uma ilustraç˜ a o uso prático do sistema.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Expectation-Based Scan Statistic for Detection of Space-Time Clusters

OBJECTIVE This paper describes a new class of space-time scan statistics designed for rapid detection of emerging disease clusters. We evaluate these methods on the task of prospective disease surveillance, and show that our methods consistently outperform the standard space-time scan statistic approach. BACKGROUND The space-time scan statistic [1] is a powerful statistical tool for prospective...

متن کامل

Detecting space-time clusters : prior work and new directions

The problem of space-time cluster detection arises in a variety of applications, including disease surveillance and brain imaging. In this work, we briefly review the state of the art in space-time cluster detection, focusing on space-time scan statistics, and we derive a number of new statistics. First, we distinguish between tests for clusters with higher disease rates inside the cluster than...

متن کامل

Covid 19: The Worst Health Calamity Of The World

The world has experienced an increased incidence and transboundary spread of emerging infectious diseases due to population growth, urbanization and globalization over the past four decades. Most of these newly emerging and re-emerging pathogens are viruses. On an average, more than two new species of viruses infecting humans are reported worldwide every year most of which are likely to be RNA ...

متن کامل

Target Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters

          Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...

متن کامل

Detection of Spatial and Spatio-Temporal Clusters

This thesis develops a general and powerful statistical framework for the automatic detection of spatial and space-time clusters. Our “generalized spatial scan” framework is a flexible, modelbased framework for accurate and computationally efficient cluster detection in diverse application domains. Through the development of the “fast spatial scan” algorithm and new Bayesian cluster detection m...

متن کامل

Spatial, temporal, and spatiotemporal analysis of cutaneous leishmaniasis in North Khuzestan Province, Iran, from 2011 to 2015: brief report

Background: Leishmaniasis is a zoonosis disease. About 350 million people are at risk of developing a disease, with 1.5 to 2 million new cases every year in the world. The aim of this study was to determine the space-time clusters of cutaneous leishmaniasis in north of Khuzestan Province, Iran. Methods: In this cross-sectional study, the annual cutaneous leishmaniasis incidence per 100,000 ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006